at

6

8

9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

HALLUCINATION HELPS: ENERGY EFFICIENT VIRTUAL
CIRCUIT ROUTING

ANTONIOS ANTONIADIS*, SUNGJIN IM', RAVISHANKAR KRISHNASWAMY?,
BENJAMIN MOSELEY$, VISWANATH NAGARAJANY KIRK PRUHS!, AND CLIFF
STEIN#

Abstract. We consider virtual circuit routing protocols with an objective of minimizing energy
in a network of components that are speed scalable, and that may be shutdown when idle. We assume
the standard model for component power: the power consumed by a component with load (speed) s
is 0 + s* where o is the static power and the exponent o > 1. We obtain a very simple O(log® k)-
approximation algorithm for multicommodity routing where k is the number of demand pairs. This
improves upon previous results by several logarithmic factors. The key step in our algorithm is a
random sampling technique that we call hallucination, which is reminiscent of the Sample-Augment
framework for Buy-at-Bulk problems, and sampling in cut-sparsification algorithms.

We also consider the online setting of the problem, where demand pairs arrive over time. We
show that our offline algorithm naturally extends to the online setting, and obtain a randomized
competitive ratio of O~(10g3"‘Jrl k), which is the first non-trivial bound. The analysis of this algorithm
involves the study of priority multicommodity flows, where edges and demand-pairs have priorities
and each demand-pair must route its flow only on edges of lower priority. We establish a poly-
logarithmic flow-cut gap for these priority flows, which we believe is of independent interest.

Finally, we show how our technique can be used to achieve a randomized (O(logm), O(log? m))
bi-criteria competitive algorithm for the uniform capacitated network design problem, where m is
the number of edges. Here, every edge has a cost c. and uniform capacity ¢, and the goal is to choose
the minimum cost subgraph that can support the given multicommodity demand. This is the first
online algorithm for this problem. In fact, our approach also improves prior results in the offline
setting by several logarithmic factors.

Key words. network design, energy efficiency, approximation algorithms, online algorithms

AMS subject classifications. 68Q25

1. Introduction. According to the US Department of Energy [1], data net-
works consume more than 50 billion kWH of energy per year, and a 40% reduction
in wide-area network energy is plausibly achievable using network components that
dynamically adjust their speed to be proportional to demand. Virtual circuit rout-
ing, in which each connection is assigned a reserved route in the network with a
guaranteed bandwidth, is used by several network protocols to achieve reliable com-
munication [32]. In this paper we consider virtual circuit routing protocols, with an
objective of minimizing energy, in a network with speed-scalable edges.

The Energy-Efficient Routing Problem (EERP). The input consists of an undi-
rected network G = (V, E), scalar non-negative multipliers on edges ¢., and a common
energy cost function f(-) defined as

* Saarland University and Max-Planck-Institute for Informatics. Supported in part by DFG grant

AN 1262/1-1.

tUniversity of California, Merced. S. Im was supported in part by NSF grants CCF-1409130,
CCF-1617653, and CCF-1844939.

¥ Microsoft Research.

8Carnegie Mellon University. Research supported in part by NSF grants CCF-1733873, CCF-
1845146, and CCF 1824303 and a Google Faculty Award

TUniversity of Michigan. Supported in part by NSF grant CCF-1750127.

I University of Pittsburgh. Supported in part by NSF grants CCF-1421508, CCF-1535755, CCF-
1907673 and an IBM Faculty Award.

Columbia University. Research supported in part by NSF grants CCF-1421161 and CCF-
1714818.

This manuscript is for review purposes only.

39

40
11

43
44
45

T s B
N = O © 00 O

Ut Ot Ot gt Ut Ut ¢
(S BTSNV

ot
~

64
65
66
67
68
69

J

[
72
73
74

(o

\

J

J

2 ANTONIADIS ET AL.

1) @ ={ 0 e

oc+z¢ ifx>0.

We are also given a collection of k requests of the form (s;, t;,d;), where for each
1€ k] ={1,2,---k}, s; € V and ¢t; € V need to be connected by a flow path with
dedicated capacity /bandwidth of d; > 1 (called a virtual circuit). The objective is to
find the flow paths P; for each request ¢ to minimize the overall energy cost of the

routing defined as
Z%j(Z@)

eck i:e€P;

We call this problem the energy efficient routing problem (EERP), and remark that
this is precisely the problem formulation studied in [4, 3, 11]. In the offline setting,
all requests are known in advance before selecting paths. In the more realistic (and
harder) online setting, requests arrive over time and the algorithm needs to select a
virtual circuit P; for each request immediately upon arrival. We consider both the
offline and online settings in this paper.

Why this energy function f(-)? Even though the model is by now standard, (see,
e.g., [3]), we provide a brief motivation. Speed-scalable network components (edges,
in our case) are associated with a power-rate curve f(z). This function measures the
power consumption as a function of its speed x. The speed of a component is assumed
to be proportional to the traffic load passing through the component, which in our
case is the total bandwidth reserved on this edge.

In equation (1.1) above, the parameter o is the static power. That is, the power
used when the component is turned on but idle. The static power can only be saved
by turning the component off, which only happens when its load/speed is 0. The term
@ is the dynamic power of the component as it varies with the speed, or equivalently
load, of the component. Here o > 1 is a parameter specifying the energy inefficiency
of the components, as speeding up by a factor of s increases the energy used per
unit computation/communication by a factor of s*~1. The value of « is in the range
[1.1, 3] for essentially all technologies [13, 41]. As in prior work [3, 11], we will assume
that all components in the network are homogenous: so the parameters a and o are
uniform across all network components.

Relation to Buy-at-Bulk Network Design. The energy efficient routing problem
has some similarity to the classic buy-at-bulk network design problem [8, 39]. The
difference is that buy-at-bulk involves a concave edge cost-function instead of f as
defined in (1.1). Note that if the cost function is concave, then it is always better
to aggregate flow as much as possible. Indeed, the idea of aggregating flows forms
the basis of all known algorithms for the buy-at-bulk problem. There are offline and
online algorithms for buy-at-bulk with poly-logarithmic ratios under both uniform
and non-uniform edge-costs [8, 19, 15].

In contrast, the edge cost function (1.1) is not concave (it is not convex either).

In particular, the static power term in function f is concave, whereas the dynamic

power term is convex. This requires an algorithm to balance the two opposing goals
described below.

o FEffect of the static power. The static power is zero when the flow x = 0

and o when = > 0. As this is concave, it is best to aggregate flow. Indeed,

This manuscript is for review purposes only.

76
78
79
80
81
82
83
84
85

87

114

116
117
118

119
120

122

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 3

an optimal solution here is to route all flow over a minimum cost Steiner
forest [2, 23] that connects the corresponding request-pairs. There is also an
O(log n)-competitive online algorithm for Steiner forest [27].

o Effect of the dynamic power. The dynamic power is £ which is convex. In
this case, it is better to dis-aggregate flow as much as possible. The greedy
algorithm that routes each request along a path of minimum increase in cost
tends to balance the flows on different edges, and is known to achieve an
O(1)-competitive ratio for any constant a [6, 24].

Previous work by Andrews et al. [3] showed that these competing forces can
be somewhat balanced by giving a polynomial-time poly-logarithmic approximation
algorithm for EERP. In this paper, we provide a simpler and better approximation
algorithm that also extends to the online setting and other related problems.

1.1. Our Results. We present three main results in this paper, starting with
the offline EERP problem.

THEOREM 1.1. There is an efficient randomized O(log® k)-approzimation algo-
rithm for the energy efficient routing problem.

This algorithm improves over the previously known approximation algorithm from [3]
in the following ways: (a) the approximation ratio is better by several log® k factors,
(b) the algorithm is itself very simple to describe and implement, and (c¢) the analysis
is also considerably simpler, with the only real “hammer” being the classic flow-cut
gap for multicommodity flow. Moreover, our techniques extend naturally to the online
setting, which is our second main result.

THEOREM 1.2. There is an efficient randomized (~?(10g3°‘+1 k)-competitive online
algorithm for the energy efficient routing problem.

This is the first non-trivial online algorithm for this basic energy minimization
problem. Previous results in the online setting could only handle the single-commodity
special case [11].

Finally, we consider the seemingly unrelated problem of capacitated network de-
sign (CapND). Here, we are given a graph G = (V, E) with n vertices and m edges,
where each edge e € F is associated with a cost ¢, > 0 and uniform capacity of ¢ > 0.
There are k requests of the form (s;,t;,d;) as in EERP. The goal is to choose a min-
imum cost subgraph H C E that can support the multicommodity flow requirement
of the requests (concurrently). In the online version, requests arrive online and the
algorithm must buy edges irrevocably to support the evolving flow requirements.

THEOREM 1.3. There is a randomized (O(logm),O(log?m)) bi-criteria compet-
itive online algorithm for uniform capacitated network design, i.e., with high proba-
bility, the solution costs O(logm) times the optimum and violates edge capacities by
factor O(log® m).

Again, this is the first non-trivial online algorithm for CapND. In fact, this approach
also improves significantly over the offline algorithm in [3] which had a (large) poly-
logarithmic bi-criteria approximation ratio. In the conference version [5] of this paper,
we described an offline algorithm with a slightly better (O(log m), O(logm)) bi-criteria
approximation ratio. Here, we only focus on the (more general) online setting.

1.2. Our Techniques. As discussed above, any algorithm for EERP needs to
balance the effects of aggregating and dis-aggregating flows. Intuitively, when the
static power is larger than the dynamic power (i.e. o > z® where x is the flow on an
edge) then we want to aggregate flows. On the other hand, when the dynamic power is

This manuscript is for review purposes only.

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

=
ot
iy

ot ot o Ut Ot
C =W N

— o e
ot
~N O Ot

—

ot Ot

NeJ

oo

160
161
162
163
164
165
166
167
168

4 ANTONIADIS ET AL.

larger (i.e. o < %) then we want to dis-aggregate flows. This suggests the approach
of (i) aggregating demands until the total demand exceeds the threshold ¢ := ol/e,
and then (ii) routing these “composite demands” in a dis-aggregated manner. Indeed,
this is the approach used in [3]. We use a different approach: instead of explicitly
aggregating demands, we use random sampling of the requests to help identify edges
with large flow.

For simplicity, consider the case when all demands are unit. In this case, our
algorithm proceeds as follows. First, the algorithm selects an approximate minimum
cost Steiner forest Gg to ensure minimal connectivity between all request-pairs. Sec-
ond, each request-pair, with probability @, hallucinates that it wants to route ¢

units of flow instead of one.! When every demand is at least ¢, the edge costs (1.1)
are always dominated by the dynamic power: so we can use existing algorithms [6, 24]
for minimizing just the dynamic power. This yields another subset G of edges, i.e.
all edges used in the routing of hallucinated demands. Finally, we route all the orig-
inal (unit) demands on the subgraph Gs U Gy so as to minimize just the dynamic
power: here we use the algorithm from [6, 24] again. The key steps in the analysis
are in showing that (i) the hallucinated demands can be routed at low cost (this is a
simple randomized rounding argument) and (ii) the original demands can be routed
at low cost on the chosen subgraph Gs U Gy (this uses results on cut-sparsification
and flow-cut gaps).

The hallucination technique is rather similar to the Sample-Augment frame-
work [25] for solving Buy-at-Bulk type problems. This is perhaps surprising because in
Buy-at-Bulk, the cost on edges is purely concave, whereas in our case the cost is con-
vex after the jump at 0. The similarities stop there, as the analyses are very different
for the two problems: our analysis more closely resembles those of cut-sparsification
algorithms [29].

A striking benefit of this simple offline algorithm is that it directly extends to the
online setting. Indeed, there are good online algorithms for both Steiner forest [27]
and dynamic-power minimization [6, 24], which can be used directly. The online
algorithm’s analysis however is considerably more involved than the offline case, and
we believe that the techniques introduced here are of independent interest. The major
difference (compared to the offline setting) is that the subgraph Gg¢ U Gy, which is
used in actually routing the demands, is built incrementally over time. Therefore, we
are faced with a non-standard multicommodity flow problem, that we call priority
multicommodity flow. Here, each edge comes with a priority (indicative of the time
when it was chosen by our online algorithm), and each request also comes with a
priority (indicative of its arrival time), and a request can only use edges with priority
lower than or equal to itself. So the key question we are interested in is: under what
conditions is there a good concurrent priority multicommodity flow? To this end, we
introduce the notions of priority-cuts and prefiz-sparsity, and establish relationships
between these quantities and priority multicommodity flows. In particular, we show
that the values of priority multicommodity flow, priority-cut and prefix-sparsity are
all within a poly-logarithmic factor of each other. In proving these results, we use a
variant of region growing [33, 21] as well as new charging arguments.

Finally, we show that the hallucination approach also works for the CapND prob-
lem. Indeed, the relevant sampling parameter ¢ for CapND is the uniform edge ca-

1We assume here that ¢ = w(logk), so the hallucination probability is well-defined. The case
q = O(log k) is much easier because the static power is always O(log™ k) times the dynamic power,
which means we can directly use existing algorithms [6, 24] for minimizing the dynamic power.

This manuscript is for review purposes only.

216

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 5

pacity (instead of ¢/ in the EERP algorithms). The CapND instance consisting of
hallucinated demands (each of ¢ units) can be solved online using an existing algo-
rithm for min-cost circuit routing [9]. Moreover, the analysis of this online algorithm
is very similar to the offline EERP algorithm.

1.3. Related Work. The energy efficient routing problem was introduced in
[4] and a poly-logarithmic approximation algorithm was obtained in [3]. It is also
known (using the relationship to buy-at-bulk) that EERP is hard to approximate
to within an Q(log'/4~¢n) factor [3]. The high-level algorithmic strategy in [3] is
to aggregate the flow within suitably defined groups, such that each group contains
a total crossing demand of roughly ¢. Then, they find a low-cost routing across
groups. Roughly, the flow paths going across groups carry large loads, so the dynamic
power dominates; whereas, flow paths within each group carry small loads, so the
static power dominates. However, the algorithm design to achieve such a routing as
well as its analysis in [3] are fairly complicated and rely on various tools: the well-
linked decomposition of Chekuri-Khanna-Shepherd [20], the construction of expanders
via matchings of Khandekar-Rao-Vazirani [30], and edge-disjoint routings in well-
connected graphs due to Rao-Zhou [37]. Moreover, the exponent of log™ k in the
poly-log approximation ratio is sufficiently large that it was not explicitly calculated
in [3].

Bansal et al. [11] considered EERP in the case of a common source vertex s for
all request-pairs, that is all s; = s. Applications for a common source vertex include
data collection by base stations in a sensor network, and supporting a multicast
communication using unicast routing. In this single-commodity setting, [11] gave an
O(1)-approximation algorithm. The algorithm and analysis are considerably easier
than [3] because, after aggregation into groups, all the flow is going to the same place.
[11] also gave an O(log®**! n)-competitive randomized online algorithm, by giving a
procedure for forming groups in an online fashion.

The uniform CapND problem was also studied in [3], where a poly-logarithmic
bicriteria approximation algorithm was obtained. In fact, [3] used this result as a
sub-routine for their overall algorithm for EERP. In this paper, we show that we can
use the hallucination approach to get a simpler and improved algorithm for CapND
which also extends to the online setting.

A related problem to the CapND problem we consider is capacitated survivable
network design [14, 17, 26], where the requirement is to compute a minimum cost
subgraph H which satisfies the flow requirement individually for each demand rather
than concurrently. These results are incomparable to those for CapND.

Finally, priority versions of a number of classic problems have been studied in
approximation algorithms, e.g. priority Steiner tree [18] and priority covering integer
programs [16]. We note however that our focus in the priority multicommodity flow
problem is structural (bounding its flow-cut gap) rather than algorithmic.

2. Preliminaries. We begin by recalling the problem statement. The energy
efficient routing problem (EERP) is defined on an undirected multi-graph G = (V| E)
with |V| = n vertices and m edges. Each edge e is associated with a scaling factor
ce > 0. There are k request-pairs, where the i*" pair specifies a source s;, a destination
t; and an integer demand d; > 1. We need to route each request-pair unsplittably
so as to minimize the objective »__p ce - f(£c) where £, denotes the flow (i.e. total
demand routed) on edge e and function f is as defined in (1.1).

In the analysis we will also be concerned with splittable (fractional) routings,
where the demand of each request may be satisfied using multiple paths. Unless

This manuscript is for review purposes only.

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247

[\
—

o N
VI \V)

=

O NN N
or Ot gt Ut Ot
C w

Y Ot

6 ANTONIADIS ET AL.

specified otherwise, any routing in solutions we seek is assumed to be unsplittable.

The power incurred on any edge e € E is naturally split into two parts: (i) the
static power which is c.o if it routes any flow or 0 otherwise, and (ii) the dynamic
power which is c.¢¢ where £, denotes the total demand routed on edge e € E. The
static (resp. dynamic) power of a routing is the sum over all edges of the static (resp.
dynamic) power.

As mentioned earlier, a useful parameter throughout the paper is ¢ := ¢'/®, which
is the amount of flow on an edge for which the static and dynamic power are equal.
We use Opt to denote the total power of a fixed optimal solution. We assume that
a > 1 is a constant, so any function of « is just O(1).

Moreover, we assume that ¢ = w(logk), as otherwise it is easy to obtain an
O(log® k)-competitive online algorithm for EERP. Indeed, when ¢ = O(logk), we
have o = O(log” k) and the static power of any routing is at most O(log® k) times the
dynamic power (recall that all demands are integer). In this case, we could simply
optimize for the dynamic power and obtain an approximation factor that is worse
by a factor of O(log® k). As there are O(1)-competitive online algorithms for dy-
namic power minimization (see below), we would then immediately get an O(log® k)-
competitive online algorithm for EERP for the case ¢ = O(logk).

Dynamic Power Minimization (DynPM). A crucial sub-routine in our algorithms
is the so-called waterfilling algorithm [24] for the problem of minimizing just the
dynamic power of the routing. The input to DynPM is the same as for EERP. We
need to route each request-pair unsplittably so as to minimize the dynamic power
objective Y. pce(fe)® where £, denotes the total demand routed on edge e. The
waterfilling algorithm is a natural online greedy algorithm for this problem, which
routes the demand of each request along the path that results in the smallest increase
in the objective. An important feature of this algorithm is that we can also implicitly
specify a subset P; of allowed s; — t; paths for each request (s;,¢;,d;). This will be
useful in the online EERP algorithm, where the underlying graph is built incrementally,
and each request can only use the edges present at the time of its arrival.

Online Waterfilling Algorithm for DynPM.
When request ¢ arrives:
1. Let /. denote the current load on each edge e in graph G.
2. Choose s; — t; path P; € P; in G to minimize) cp c ((le +di)* — £2).

THEOREM 2.1. Given any graph G = (V, E), and requests (s;,t;,d;) with a set of
allowed paths Py, the waterfilling algorithm is O(a®)-competitive for the objective of
minimaizing the total dynamic power.

In all our applications of Theorem 2.1, each set P; (allowed s; —t; paths) consists
of all s; — t; paths in some given subgraph of G. Note that in this case, the min-cost
path P; € P; in Step 2 above can be computed in polynomial time by running any
shortest path algorithm on the given subgraph.

For the case where P; is the set of all s;-t; paths in G, [24] proved Theorem 2.1
using a dual-fitting framework. Previously, [10] used a potential function based frame-
work to prove a similar result in the special case of the load balancing problem. It
is not hard to adapt these existing analyses to our setting where each request also
specifies a set of allowed paths. For completeness, we give a proof of Theorem 2.1 in
Appendix A using the approach from [10].

3. Offline Algorithm for EERP. In this section we give a polynomial time
O(log” k)-approximation algorithm for EERP, thereby proving Theorem 1.1. As men-

This manuscript is for review purposes only.

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 7

tioned in Section 2 we may assume that ¢ = w(logk): this makes the algorithm and
analysis simpler. Below we use A = O(log k) where the constant term will be set later
such that % < 1. We also assume that each demand d; < ¢: again this is because
demands larger than ¢ can be routed using the algorithm for minimizing just dynamic
power, and combining the two solutions will only incur an extra multiplicative factor
of 2% in the routing cost.

Our overall algorithm comprises two stages. In the first stage (steps 1 and 2
below) we decide which edges to power on or “buy” and incur the static cost. In
the second stage (step 3 below) we route all the requests using the bought edges, to
minimize just the dynamic power of the routing.

Offline Algorithm Description.

1. Constructing the Steiner backbone Gg. Solve the Steiner forest instance
on graph G = (V, E) with edge-costs {c. : e € E} and pairs {(s;,#;)}*_, using the
2-approximation algorithm from [2, 23]. Let Gs denote the resulting solution.

2. Constructing the Hallucination backbone Ggy. Each request i € [k]
independently “hallucinates” a demand of ¢- B; units, where B; ~ Binomial(d;, %)
Let Zj4; denote the resulting (random) instance of DynPM on graph G and the
hallucinated demands. Run the waterfilling algorithm (Theorem 2.1) by feeding
the requests in Zp,; in an arbitrary order, with P; being the set of all s;-t; paths
in G. Let H denote the resulting unsplittable routing and let Gy denote the
subgraph consisting of all edges used in H.

3. Routing on the backbone. Let Z,.; denote the DynPM instance on graph
Gr = Gs U Gy with all the original requests {(s;,t;,d;) : @ € [k]}. Feed the
requests of Z,.; to the waterfilling algorithm (Theorem 2.1) in any order to obtain
the final unsplittable routing R.

Note that the hallucinated flow H is used solely to determine which edges to
consider for the final routing in step 3.

3.1. Analysis. Let Opt denote the optimal cost of the EERP instance. The cost
of the algorithm is bounded by the total static power of the backbone Gr = GsUGgy
(from Steps 1 and 2) plus the total dynamic power of routing R (from Step 3).
Static power of Gg. The static power of any feasible EERP solution is clearly at
least o times the optimal Steiner forest cost. So, using the 2-approximation algorithm
for Steiner forest [2, 23], it follows that the static power for the edges in G is at most
twice that in the EERP optimum, i.e. at most 2 - Opt.

Static power of Gg. The static power of the hallucination backbone Gy is at
most the dynamic power of the hallucinated flow H since every hallucinated request-
pair routes at least ¢ units of flow unsplittably in . In Lemma 3.1 we show that
the dynamic power (and hence static power) for the hallucinated flow is O(A*) - Opt
using a simple probabilistic argument. A similar idea was used in [11] for the online
single-commodity EERP.

Dynamic power. In order to bound the dynamic power of our routing in Step 3,
by Theorem 2.1 it suffices to prove that there exists a routing of low dynamic power
in the subgraph Gg. To this end, we assign each edge in the backbone G a capacity
ge equal to the amount of hallucinated flow routed on it in #H, plus Ag if it is in the
Steiner backbone Gg. Importantly, using the dynamic power of H, these capacities
will satisfy > .. ceqe = O(A*) - Opt. Then we show (in Lemma 3.3) that the non-
uniform sparsest cut (w.r.t the demands of all requests in the original instance) under
these capacities is 2(log k) with high probability: this uses a classic cut sparsification

This manuscript is for review purposes only.

308
309
310
311
312
313
314

315
316
317
318
319

8 ANTONIADIS ET AL.

result [29]. Next, using the O(log k) flow-cut gap for multicommodity flow [33, 34, 7],
we obtain the existence of a fractional routing within the backbone Gy that respects
capacities c¢. Finally, in Lemma 3.5 we show by randomly rounding this fractional
flow (as in [24]) that there exists an integral routing in Gp with dynamic power O(1)
times the dynamic power of the fractional routing.

LEMMA 3.1. The expected dynamic power of hallucinated flow H is O(A%) - Opt.

Proof. Consider any fixed optimal EERP solution that routes each request i € [k]
along some path P. Let O denote the routing that sends the hallucinated demand
q - B; along path P} for each i € [k]. We will show that the expected dynamic power
of O is O(A*) - Opt. Combined with Theorem 2.1, it would follow that the expected
dynamic power of the hallucinated flow H is at most O(*) - Opt.

We bound the expected dynamic power in O separately for each edge e € E. Fix
an edge e and let K C [k] denote the requests whose optimal paths P} use e. Let
N =) ,ck di be the load on e in the optimal EERP solution; so the cost of edge e
in this solution is c.(0 + N®). The load on edge e in O is M = } ., q - B;. Note
that we can write B; = Z?;l X;; where each X;; ~ Bernoulli(%) independently. So
random variable M is the sum of N independent random variables that each take
value ¢ with probability A/¢q (and zero otherwise). Using Corollary B.3 with p = A\/q
and D = q , we obtain:

E[M®] < 0(1) (2 N-g" + (2 N q)“) <O (Ng*™' +N?).

Note that Ng®~! < max{N,q}* < N%+ ¢* = N® + 0. Combined with the above
inequality, we obtain E[M*] = O(A\?) - (2N + o), and so the cost of the edge e in H
is O(A?) times the cost of edge e in the optimal EERP solution.

Now summing over all edges e € E and using linearity of expectations, we conclude
that the expected dynamic power in O is at most O(A%) - Opt.

LEMMA 3.2. The expected static power of the backbone, G is 0 -E[. ce| =
O(A%) - Opt.

Proof. Observe that the static power of the backbone,

O’ZCeSUZCe+O’Z Cce <20pt+o Zce

eeGp ecGg eeGy ecGy

as Gs is a 2-approximate Steiner forest. So the expected static power o-E[Y . ce] <
20pt + 0E[} " cq,, Cel- It now suffices to bound oE[}_ ., ce] which is the expected
static power of H. Note that if an edge has positive load in H then it has load at least
q. So the static power of H is at most its dynamic power. Combined with Lemma 3.1
we obtain o[o, ce] = O(A?) - Opt, which proves the lemma. d

It remains to bound the dynamic power of routing all demands in the backbone
Gr. To this end, we assign a virtual capacity of g\ on all edges in Gg, and for edges
in Gy, we set the virtual capacity to be equal to the load e carries in H (which is at
least ¢). Note that if we show that there exists a flow which respects these capacities
routing all demands, then the dynamic power of such a routing would be at most
O(A%) times the static power of Gg plus the dynamic power of G, both of which are
bounded in the previous lemmas. Indeed, this is what we show by establishing good
bounds on the sparsity of the graph with these virtual capacities w.r.t. the demands

This manuscript is for review purposes only.

320
321

322

323
324
325
326
327
328
329
330
331

332

333
334

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 9

of the request pairs. More formally, let {H, : ¢ € E} denote the edge loads induced
by the routing H. Then we define the following edge capacities:

~ {He ifeGGF\GS Veec E

e = H.+ X\ ifeeGg ’

Note that only edges in Ggp = Gg U Gy have nonzero capacity.
Moreover, ¢ < 2% (H® + A% - 1.cqy), SO we have:

(3.1) Z cE[ge] < 2¢ (Z cE[H} 4+ o)™ - Z ce> = O(\%) - Opt,

e€ER ecE ecGg

where the last inequality uses (i) the static power of Gg is o - ZCEGS < 2. Opt and
(ii) the expected dynamic power of H is) . c.E[HS] = O(A*) - Opt by Lemma 3.1.

Now we turn our attention to establishing lower bounds on the graph sparsity.
For an undirected graph G = (V, E) and subset S C V', we use the standard notation
dc(S) == {(u,v) € E: u € S,v ¢ S} for the cut corresponding to S. We shall
sometimes refer to the vertices of these request-pairs as terminals to distinguish them
from Steiner vertices in G that do not participate in any request-pair. The sparsity of
a graph G with edge capacities ¢ : E — R4 w.r.t. the demands of all the request-pairs
is the minimum (over all S C V) of the ratio of the capacity crossing cut S to the
demand crossing it, i.e.

. . 2665(5) ae
sparslty(G) T g'ngl‘r} Zie[k];wﬂ{&ntiﬂ:l di'

It is well known that if the sparsity is Q(log k) then there is a fractional routing for
all the requests that respects the capacities [34, 7].

LEMMA 3.3. With probability at least 1 —k=3%, the sparsity of graph G with edge
capacities {G. : e € E} and requests {(s;,t;,d;) 1 i € [k]} is at least /3.

Proof. For the proof we consider a virtual graph B on vertices V' with the following

edges and capacities:

o Steiner edges: each edge e € Gg has capacity g. = \q.

e Hallucinated edges: for each i € [k] edge (s;,t;) has capacity G(s,.+,) = ¢ - Bi.
Each hallucinated edge (s;,t;) in B corresponds to an s; — t; path carrying ¢ - B; flow
in H. Hence, for any T C V, the g-capacity of cut §(7T') is at least as much as its
g-capacity. Thus it suffices to show that the sparsity of B is at least .

We observe that the connected components in B are the same as those in the
Steiner forest Gg: this is because every request pair {si,ti}le is already connected
in Gg. Moreover, in order to lower bound the sparsity of B, it suffices to lower bound
the sparsity of each component of Gg: this is because there are no requests across
components of Gg. In particular, we will show that the sparsity of any component of
G is at least A with probability 1 — k% Then, a union bound over all components
in G (which are at most k) would prove the lemma.

Consider now any connected component of Gg. To reduce notation, we assume
in the rest of the proof that there is a single component in GGg which connects all
k pairs. (Otherwise, exactly the same argument works by restricting to the request-
pairs in a particular connected component.) Let Gg = (Vg, Eg) denote this connected
component, which is a Steiner tree on all terminals. By shortcutting over degree two

This manuscript is for review purposes only.

383

384

10 ANTONIADIS ET AL.

Steiner vertices, we may assume that the number of vertices |Vg| is at most 4k (i.e.
2k terminals and at most 2k Steiner vertices).

The main idea now is to apply a classic cut-sparsification result of [29]. To this
end, consider a random multigraph M on vertices Vg by independently sampling the
following edges:

e For each e € Eg there are)\ parallel edges eq,---e) between the end-points
of e, each with probability p(e;) = 1.
e For each request i € [k] there are d; parallel edges 71, - - - 73 4, between s; and
t;, each with probability p(r; ;) = A/q.
Note that scaling all edges in M by factor ¢ yields graph B. Let M denote the
weighted multigraph where each edge e has weight equal to its probability p. (defined
above). As Eg corresponds to a tree on all vertices Vg, the minimum cut in M is at
least A. By choosing A > 9(4a + 2) In|Vs| which is O(log k), and applying Theorem
2.1 from [29], we obtain:
With probability at least 1 — /12_4", every cut in M has capacity at
least % times its capacity in M.
Now, observe that the capacity of any cut 7' C Vg in M is at least

D SRR]

b etpi{onta}nTI=1

where d(0T) denotes the total demand crossing cut 7. Combined with the above
cut-sparsification result and the fact that B ~ g x M, it follows that the capacity of
any cut T C Vg in B is at least 3 - d(67) with probability at least 1 — k~**. Thus the

sparsity of B is at least % with probability at least 1 — k=4, 0

COROLLARY 3.4. With probability at least 1 —k=3%, there exists a fractional rout-
ing of all request-pairs in backbone G that respects edge capacities q.

Proof. By Lemma 3.3 we know that the sparsity of G is at least A/3. We also
know that the flow-cut gap for concurrent multicommodity flow is p = O(logk).
Hence, choosing A > 3 - p it follows that there exists a feasible fractional routing. 0O

LEMMA 3.5. The expected dynamic power of the routing R is at most
O(1) x (E[Static power of Gg] + ZcJE[ZjS]) < O(A%) - Opt.
e

Proof. We will bound the expected optimal dynamic power of instance Z,.; by
O(A%) - Opt. The lemma would then follow from Theorem 2.1.

We first consider the case where there exists a fractional routing F in G that
respects capacities ¢ (which happens with probability at least 1 — k=3%). In this
case, the dynamic power of the fractional routing F is at most) . c.qe. We now
construct an unsplittable routing ¢/ from F by simple randomized rounding. For each
request 7, we take a path decomposition {P;, /J;} of the s; — t; flow in the fractional
routing; here uj» is the fraction of i’'s demand routed along path P; Then we route
d; units along path P; chosen independently from the distribution {Pj, ,ué}, for each
i € [k]. For each edge e, let f. (resp. U.) denote the load on e in routing F (resp. U).
Note that U, = Zle d; - I.; where I. ; = 1ccp,. Also fo = E[U.]. For a fixed edge e,

This manuscript is for review purposes only.

385

386

388

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 11

as the random variables I, ; are independent, we can use Theorem B.2 to obtain:

E[UY] < O(1) - max{fg,Zda [I.i]} <O(1) -max{f>, ¢ '- f.}.

i=1

The last inequality uses the fact that max;cp) d; < q. Moreover,

_l'fe Smax{%fe}a Sqa+f320+ff7

which implies E[U2] < O(1) - (o + f&). So the expected dynamic power of U is

Y cEUS<O(1) Y celo + £2)

eeGp eeGp
o Z Ce +O(1) : Z Cefea
ecGr eceGp
oY et o) e
eeGp eck

The first inequality uses the fact that only edges of Gr are used in the routing
U and the last inequality uses our assumption that F respects capacities ¢. Taking
expectation over the random choices in Step 2, we obtain

E[Z cUS] < 0(1)-oE| Z ce] +O(1 Zce [q5].

eeGp eeGp e€E

This proves the first part of the lemma (note that the first term in the right-hand-side
above is the static power of Gr). Finally, using Lemma 3.2 and (3.1) the right-hand-
side above is at most O(A%) - Opt.

Now we consider the case that there is no capacity-respecting fractional routing in
Gr. By Corollary 3.4 this occurs with probability at most £~3<. In this case, consider
the routing that sends d; demand along the unique s; —t; path in Gg for each i € [k].
Since each edge is used at most k times and max d; < ¢, the dynamic power is at most
k times the static power used by Gg. So the dynamic power of this routing is at most
2k - Opt. As this case only occurs with probability at most k=3¢ (Corollary 3.4), the
expected dynamic power of this routing is k3% - 2k~ - Opt = O(1) - Opt. d

4. Priority Multicommodity Flows and Priority Cuts. We now take a de-
tour, and describe a generalization of multicommodity flows which will help us in the
analysis of our online algorithm for EERP. We stress that the online algorithm itself
remains very simple. The following abstractions will be used exclusively in the anal-
ysis. We also believe that these priority extensions of the standard multicommodity
flows would be of independent interest.

In a priority multicommodity flow, we are given an increasing sequence of multi-
graphs G(1) C G(2) C --- C G(k) with respective requests {(s;,t;,d;)}*_,. Note that
the vertex-set V' remains the same for all the multigraphs. Also, Whlle in general the
edges could have arbitrary non-negative capacities, we assume for simplicity that all
edges have unit capacity. Indeed, this is without loss of generality as we can replace
an edge e with capacity g. with g. parallel edges of unit capacity. Hence, for the rest
of this section, we assume that all edges have unit capacity.

DEFINITION 4.1 (Priority Multicommodity Flow). Consider any sequence of
multigraphs G(1) C G(2) C --- C G(k) and requests {(s;,t;,d;) = i € [k]}. A priority

This manuscript is for review purposes only.

114
415
416
417
118
419
420
421
122
123
424
425
126
127
428
429
430

431
432
433
434
135
436
437
438
139
440
441

442
443
444
445
446
447
148
449
450
451
452
153
154

12 ANTONIADIS ET AL.

multicommodity flow of value v consists of a fractional routing of v - d; units of flow
between s; and t; only using edges of multigraph G(i), for each i € [k], where the total
flow through any edge e is at most 1.

Intuitively, edges appear with priorities (think of the priority of an edge to be ¢ if
it first appears in G(¢)), and the request pair s;-t; can only use edges which have
priority lesser than or equal to ¢ to route its flow. It is easy to see that the maximum
concurrent priority multicommodity flow can be computed efficiently using a linear
programming formulation.

As for the dual notion of cuts, there are in fact two plausible definitions. One,
inspired by the LP dual is what we call priority cuts, and the second, which will be
easier to argue about, is what we call prefiz cuts.

DEFINITION 4.2 (Priority Cuts). Consider any sequence of multigraphs G(1) C
G(2) C --- C G(k) with unit edge-capacities and requests {(s;,t;,d;) : i € [k]}. We
say that a set Q@ C G(k) of edges priority separates pair i if and only if s; and t;
are separated in the graph G(i) \ Q. The sparsity of a priority-cut @Q is the ratio
of |Q| to the total demand of pairs that are priority separated by Q). The sparsest
priority-cut is the minimum sparsity over all priority-cuts.

DEFINITION 4.3 (Prefix Sparsity). Consider any sequence of multigraphs G(1) C
G(2) C --- C G(k) with unit edge-capacities and requests {(s;,t;,d;) : i € [k]}. The
prefix sparsity of this sequence is

k . 0G:i) (5)]
min min .
=1 SCV Zlgjgi:|5m{sj,tj}|:1 d;

4.1. Relationship between Prefix and Priority Sparsity. In this section,
we relate the two definitions of sparsity. Indeed, from the definitions, it is clear that
the value of the sparsest priority cut is at most the prefix sparsity, since every prefix
cut is also a priority cut. However, the reverse direction is not obvious. Note that
a demand j may be priority cut by some subset @ C G(k) even though it is not
separated in G (i) \ @ for any i > j, i.e. j does not contribute to the i*" prefix-sparsity
for ¢ > j. To this end, we next show that there is indeed an approximate equivalence
between the two notions of sparsity.

THEOREM 4.4. Consider a sequence of unit-capacity multigraphs G(1) C G(2) C
-+ C G(k) with requests {(si,t;,d;) = i € [k]}. If the prefiz-sparsity is at least «, then

the sparsest priority cut is at least ﬁ.

Proof. Consider any Q C G(k) that priority separates pairs X C [k]. For any
subset Y C [k] of requests, let d(Y) =),y d; denote its total demand. We will show
that d(X) < % - |@], which would imply the desired lower bound on the sparsest
priority-cut. Define graph H(i) := G(i) \ Q for each i € [k]. The proof is based on
considering the connectivity structure in the sequence H(1) C H(2) C --- C H(k).
We say that at each time ¢ € [k] the request-pair (s;,t;) arrives. At time j when
(sj,t;) arrives, the edges G(7) \ G(j — 1) \ Q are added to graph H(j —1) to get graph
H(j). Note that for each ¢ € X, the pair s; — t; is separated in graph H (i), by the
definition of priority-cut Q.

To simplify the analysis, we assume (without loss of generality) that H(k) has a
single connected component: this can be ensured by adding a dummy request k + 1
at the end where the newly arriving edges G(k + 1) \ G(k), which are disjoint from
@, contains a spanning tree.

This manuscript is for review purposes only.

iy

B R A
[R RS
0w N & o

e
o

160
161

462
463
464
165
466
467
468
469
470
471

474
475
476
477
478
479
480
181
182

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 13

For any subset of vertices V! C V, let N(V') = d({i € X : s;,t; € V'}) be the
total demand of requests in X that are induced in V’'. We will show below by an
inductive argument that d(X) = N(V) < % |Q|. In the following, we refer to the
end points of request-pairs as terminals.

We now define a recurrence. Consider any ¢ € [k] and a connected component C
in H(i). Let j < i be the earliest time a request-pair arrived such that all vertices in C
became connected in graph H(j). Let Cy, Cy, ... Cy be the components in H(j—1)[C]
which merged to become connected as C, at time j. By definition, N(C},) equals the
total demand of pairs in X that are contained in Cj, for each h € [¢]. Note that
N(C) equals 22:1 N(Cp) 4+ d(I(C)) where I(C) denotes the set of requests in X
“crossing” {Cj,}},_,, i.e. pairs having end points in two distinct components among
{Ch}t_,. For each h € [(] define:

e Qn = |6(Cr) N Q| the number of edges in @ with exactly one endpoint in
Ch. Note that Q = [dg(j—1)(Ch)| because Cj is a connected component in
H(G—1)=G(j - D\ Q.
e I ={aeX :a<j—1,{sa,ta} NChr| =1} the set of requests in X that
arrive by time 7 — 1 and have exactly one end point in Cj,.
We index the components {Cj,}4_, so that C; contains the maximum number of
terminals. We claim that I(C) C Ui:z I,. To see this, note that each request in
I(C) must have exactly one end-point in at least one component {C},}% _,. Moreover,
I(C) C [j—1] as each pair b € I(C) is in X and is induced on C which gets connected
at time j: recall that s, and ¢, must be disconnected in graph H(b). Thus we have

4

4
N@©) < Y N(Cw) + Y dln).

h=1 h=2

We now use the prefix-sparsity condition to bound each d(Ij,). Consider the cut
C, in graph G(j —1). The number of crossing edges ’5G(j71) (C’h)‘ is at most @y, since
C, is a maximally connected component of H(j —1) = G(j — 1) \ Q. Moreover, Iy, is
a subset of the requests with index at most j — 1 crossing C}. By the prefix-sparisty
assumption, the sparsity of cut C}, in graph G(j — 1) is at least a, i.e.

o< [9ci-1)(Cn)| < _@n
“d({ae i1 (0N {sasta}| =1}) T d(In)”

Combining the above two inequalities, we obtain

L L
(4.1) N(C) < > N(Cw) + gZQh.
h=1 h=2

Consider expanding this recursion to obtain N(V'), which is possible as V is a
connected component in H (k). The base case of the recursion is singleton components,
i.e. N({v}) =0 for any v € V. Consider the contribution of each edge e = (u,v) € Q
separately. Whenever e participates in the expression é'22=2 Qp in (4.1), the number
of terminals in the component containing either u or v doubles. This is because e must
have one end-point in some {C}}4_, and we chose indices such that terminals(Cy) >
terminals(Cp) for all h € [¢]. Thus, the number of times e contributes is at most
2log, k, and its total contribution is at most %. Tt follows that N (V) < % Q.
This completes the proof. 0

This manuscript is for review purposes only.

—
—_

e e S
[S B ENIUI V)

at

EN |

14 ANTONIADIS ET AL.

r

Unit capacity edges in G(0)

Request pairs in batch ¢

\ fffffffff e e

Cliques of infinite capacity edges in G(4)

Fic. 1. Gap instance for prefiz sparsity and priority sparsest cut.

Tight example. We now provide an example to show that the gap between
prefix sparsity and priority sparsest cut can be (log k), thereby showing that The-
orem 4.4 is tight up to constant factors. For clarity in exposition, we assume that
request pairs arrive in batches of multiple request pairs per batch, and edges are also
correspondingly added in batches.

Consider the following priority multigraph. There are n = 2¢ leaf vertices, say
labeled v1, v, ..., vy, and one root vertex r. The graph G(0) consists of unit-capacity
edges (v;,7) for 1 < j < n. The graph G(1) then consists of infinite capacity edges
between (vy,vs), (vs,v4), ..., (Vn_1, V). For each 1 <4 < ¢, graph G(i) adds edges of
infinite capacity between any pair of vertices in {v;.0i1,vj.2i42,...,V(j41).2i } for all
0<j<2%—1. See Figure 1.

We now explain the request pairs which are introduced. In the batch correspond-
ing to G(0), for each 0 < a < 271 — 1, there is a request pair with unit demand
introduced between voq,1 and vaeio. For each 1 < i < £ — 1, the i*" batch corre-
sponding to G(i) has a request pair with unit demand between v;si 1, and v(j11)2i4q
forall 1 < a < 2" and all even 0 < j < 2=t _ 1. Note that the total number of
request pairs is k := £- 271 as the requests in each batch corresponds to a matching
on {va}gil. See also Figure 1.

This completes the construction of our instance. To finish the analysis, we show
that the priority sparsest cut value is at most 2/¢, and that the prefix sparsity is at
least 1, thereby giving us a gap of £ = O(log k).

Indeed, note that the set of edges Q@ = {(v;,7) : 1 < j < n} forms a priority
cut which priority separates all the request pairs. To see this, consider graph G(i)
for any 0 < ¢ < £ — 1. Note that each edge in G(i) \ @ is induced on some “group”
{vj.2i41,Vj.2i49, -, V(41)2i } for 0 < j < 2¢=% — 1. Whereas, every request pair in
the i*" batch is between vertices from different groups. Hence, all the request pairs
in the i*" batch (for 0 < i < £ — 1) are separated in G(i) \ Q, giving us the desired
bound on the priority sparsest cut.

Next we note that the prefix sparsity is at least 1. Indeed, consider any i for
0 <i</¢—1, and let us restrict our attention to the graph G(i) and all the requests
in the batches 0,1, ...,7. We now exhibit a concurrent multicommodity flow for these
requests in G(i). Indeed, for all request pairs in batches 0,1,...,7 — 1, we directly
send their flow using the infinite capacity edges present in G(2). For each request (s, t)
in the i*" batch, we route the flow along the s — r — ¢ path in G(0). Note that these

paths are edge disjoint as each vertex {va}ff:l appears in exactly one request from

This manuscript is for review purposes only.

518

519

3

0N NN N NN NN
Tl = W N =

N N
S ©

ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot

w W W W
[\

v Ot Ot Ot

546

(@48
[oN}

ot
SN

Ut Ut Ot Ot Ot Ot ¢
[S1 I, B S
[\

i
[S1 B SNV

ot C

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 15

batch . So all edge capacities are satisfied. As there is a feasible multicommodity
flow, the prefix sparsity (in fact, even its LP relaxation) must be at least one.

4.2. Priority Multicommodity Flows and Priority Sparsity. We can ex-
press the maximum concurrent priority multicommodity flow problem as a linear
program (see below). Let F* denote the optimal value of this LP. The dual of this
LP (which also has optimal value F*) turns out to be a natural relaxation of the
sparsest priority cut problem. To bound the flow-cut gap, we show that an op-
timal dual solution can be rounded to obtain an integral priority cut of sparsity
O(log2 k -loglog k) F*, which would establish an upper bound on the flow-cut gap for
priority multicommodity flows. From a technical perspective, our rounding uses the
region growing approach [22, 21] in a recursive manner to generate the priority cut,
unlike traditional region-growing algorithms for sparsest cut. We remark that for the
static case (without priorities), a better ©(log k) flow-cut gap is known; however, this
relies on metric embedding ideas [34] which are not directly applicable in our setting
with priorities. Improving our upper bounds (or obtaining better lower bounds) for
the priority flow-cut gap is an interesting direction in its own right.

Priority Multicommodity Flow LP and Dual. We begin by stating the LP
for priority multicommodity flow, and its dual problem. In the LPs below, P; denotes
the set of all s;-t; paths in G(i). Also, in the primal formulation, the variable f(p)
denotes the amount of flow to be routed on some path p.

(PriorityFlowLP) max 7y
(4.2) s.t. f(p) > ~d; Vi € [k]
PEP;
(4.3) > flp) <1 Ve € G(k)
pleep
(4.4) f(p)>0 Vi € [k],Vp € P;
(PriorityCutLP) min Z Ze
ecG(k)
k
(4.5) st Y digi > 1
i=1
(4.6) Y ze=m; VpePiVie [k]
ecp
(4.7) ze >0 Ve € G(k)
(4.8) n; >0 Vi € [k]

The feasible solutions for the primal LP are fractional routings such that each
request-pair ¢ routes at least a «y-fraction of its demand between them in graph G(i)
(constraint (4.2)), and such that no edge supports flow more than one (constraint
(4.3)). This is precisely the priority multicommodity flow problem.

In the dual, we have an LP relaxation of the sparsest priority-cut problem: if
an integral solution Q C G(k) priority-cuts k' request-pairs, we set 1; = 1/k’ for
the request-pairs which are priority separated, and z. = 1/k’ for edges in @ and 0

This manuscript is for review purposes only.

ot
-
BN

t

=~

16 ANTONIADIS ET AL.

otherwise. The objective value is then the sparsity of the priority-cut). We now
present our main result of this section, which essentially establishes a bound on the
flow-cut gap.

LEMMA 4.5. Given a fractional solution to (PriorityCutLP) of value F*, we can
obtain a priority cut of sparsity at most O(logk - log(Dk) - loglog k) F™.

Here is an outline of the proof. Consider any fixed optimal solution (n*,z*) to
(PriorityCutLP). First, we use a geometric scaling step (Claim 4.6) to reduce to a “pri-
ority multicut” problem where all requests in some subset must be priority cut. This
step incurs an O(log kD)-factor loss in the sparsity. Then we apply a variant of the
region growing method (Lemma 4.5) to round fractional priority multicut solutions,
which loses another O(log k - loglog k) factor.

We now define the priority multicut problem formally An instance of priority
multicut is given by a sequence H(1) C H(2) C --- C H(r) of multigraphs with a
set of demand pairs IT = {(s;,¢;)}7_;. The goal is to find a minimum size subset
Q C H(r) of edges that priority cuts each pair, i.e. s; —¢; is disconnected in H (i) \ @
for all ¢ € [r]. The natural LP relaxation for priority multicut is:

(MultiCutLP) min Z Ze
e€H(r)
(4.9) Y a1 Vi € [r], Vp € P,
ecp
(4.10) ze >0, Ve € H(r)

Above, P; is the set of s; — t; paths in graph H(i).

CLAIM 4.6. Given any solution (n*,z*) to (PriorityCutLP), there is a subset II C
[k] and solution z feasible to (MultiCutLP) for separating the requests in Il such that:

Do Re
—=<¢— < 8log(Dk) - z,
ZZEH dl Z

Proof. For all ¢ € [k] where nf < 1/(2Dk) we reset n; = 0. Notice that since
there are at most k variables 7;, this results in a solution to (PriorityCutLP) where the
constraint (4.5) has

In other words, (4.5) is satisfied to extent at least 1/2. We now geometrically group
the n* variables, according to classes

Ch={ick]| 27" <nr <271 for he{1,2,...,log(2Dk)}.

Let C; be the group that maximizes)., din;. Since there are at most log(2Dk)
groups and Y, d;n} > 1/2, we have 27¢*! Yicc, di 2 Do, dint > @Tl(l)k))’ and
so we have), d; > 2¢=3 /log(Dk).

Now, to get our instance for priority multicut and associated fractional solution
o (MultiCutLP), we simply set IT = Cy, i.e., all the requests in Cy need to be priority
cut. The graph sequence G(1) C G(2) C --- G(k) is also restricted to the requests in
II. To ensure that every pair in Cy is separated, we scale the metric {z}}ccp by a

This manuscript is for review purposes only.

580

581
582
583
584

585

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 17

factor of 2, i.e., set 2z, = min(1,2%2}). It is now easy to see that z is a valid fractional
solution for (MultiCutLP) for separating the requests in II = Cy. Moreover,

Ze Ze < 22 Ze Z:
Yiendi — 273/ log(Dk)

< 8log(Dk)- Y _ 27,

which proves the claim. 0

We will use the fractional solution z to the priority multicut instance on II (ob-
tained from Claim 4.6) to find a priority cut of low sparsity. We restrict the graph
sequence G(1) C G(2) C ---G(k) to the requests in II: let H(1) C H(2) C --- H(r)
denote this subsequence where r = |II|. To reduce notation we also renumber the
requests so that the requests in II are numbered 1,2, ---r in the order of their arrival.

We now proceed with our rounding algorithm. The next step relies on a variant of
the region-growing technique [33, 22, 21]. Before describing the rounding, we introduce
some useful notation. Given a graph L C H(r), let d denote the shortest-path metric
defined by {z. : e € L}, i.e. d*(u,v) is the length of the shortest path between u and
v with weight z only on edges of L. For any vertex v € V' and p > 0, define:

B"(v,p) == {u eV :d"(v,u) < p} the ball of radius p around v in metric d*.

L(v, p) the induced graph of L on vertices B (v, p).
6L (v, p) = {(u,w) € L : we BE(v, p),w ¢ BX(v, p)} the edges cut by B (v, p).

VE(v, p) == Z Ze + Z (p—d"(v,u) + V. terminals (B" (v, p))
e€L(v,p) (u,w)edL(v,p) r

the volume of ball B (v, p), where V* = > ccH(r) %e is the total LP volume.
We will use the following technical lemma:

LEMMA 4.7 ([21]). For anyi € [r] and L C H(r) with d*(s;,t;) > 1, there exists
a value 0 < p < 1/2 such that

L L 2-VL(si,1/2))
0%(si,p)| < 4loglogr - V™ (s, p) 1Og< Vi))
In rounding solution z of (MultiCutLP), we will recursively generate the priority
multicut (). Recall that we have now restricted ourselves to the requests in II, that are
renumbered [r] = {1,2,---r}. The input to our recursive procedure is an index i € [r]
and vertex subset U C V such that ¢ is the maximum index with both s;,t; € U. Let
IIy denote the set of all requests in IT with both end-points in U. The initial call is
with 4 = 7 and U = V, and the solution Q = () initially. For the recursive step, given i
and U, we consider the induced graph L = H (i)[U]. Note that d"()(s;,t;) > 1 by the
feasibility of fractional solution z. Using the fact that both s;,¢; € L C H (i) we have
db(sit;) > 1. Let Z =3 . ze + VT -terminals(U) denote the volume of subgraph
L. Applying Lemma 4.7 to both s; and t;, we find two radii ps, p;y < % such that:

2-Z
|6L(si7ps)| S 410g lOgT ! VL(S’U Ps) . lOg <]}L(Sl,ps))) and

2-Z
I L
(6" (tipr)l < 4loglogr - VY (ti,) -log (V%sp))

This manuscript is for review purposes only.

588
589
590
591
592
593
594
595
596
597

598

599
600
601

18 ANTONIADIS ET AL.

Above we used the fact that V¥(s;,1/2) < Z since ball B¥(s;,1/2) C L; simi-
larly VI(t;,1/2) < Z. Note that the balls B(s;, ps) and BL(t;,p;) are disjoint
as dL(si,ti) > 1 and ps,pr < % So one of them, say the ball around s;, has vol-
ume X = VE(s;,ps) < Z/2. We update the solution Q < Q U 6%(s;,ps). Let
Uy + BY(s;,ps) and Uy < U \ BL(s;, ps). Note that all request-pairs j € Iy which
have exactly one end-point in U; are priority-cut by d%(s;, ps); in fact request j is
separated even in graph H(i) O H(j). The remaining pairs of Iy are induced on
either U; or Us, and we handle them recursively in the two calls with U; and Us
(along with the indices of the maximum induced requests). Let X’ and Y denote the
volumes of the induced graphs H(i)[U;] and H(i)[Us], on which we recurse.? Note
that X’ < X and Y < 7 — X.

In order to bound the total cost of our solution () we make use of a recursive
bound from [40, 21]. For any value 0 < x < V*, let f(z) denote the maximum
cost of the priority cut computed by this procedure on any subgraph of volume x.
Note that f(xz) = 0 for z < % since this would correspond to a subgraph with
at most one terminal, i.e. containing no induced request-pair. We will show that
f(z) < 8loglogr - - log (35£). From the preceding discussion, for any volume Z
subgraph we have:

f(z)y < max (4loglogr-X~logQZ + f(X) + f(Z—X)).
K<X§§ X

=

Inductively substituting f(X) < 8loglogr - X - log (265) and similarly for f(Z —

X), one can check directly (using X < Z/2) that the expression above is at most
8loglogr - Z - log (2\’;5)

Clearly the total cost of Q is at most f(3V*), which by the above calculation is
O(logr -loglogr) - V* = O(logr - loglogr) - ZeeH(r) ze. Moreover, all demands in II

are separated. So the sparsity of priority cut @ is

ZeEH(r) Ze

Ziel‘[d;

where the inequality is by Claim 4.6. This completes the proof of Lemma 4.5.

O(logr - loglogr) - < O(1)logk - log(Dk) - loglog k Z 2y,
(&

An immediate consequence of Lemma 4.5 is:

THEOREM 4.8. The worst-case ratio between sparsest priority-cut and mazimum
priority flow is O(log k -log(kD) -loglog k), where D is the max-to-min demand ratio.

Proof. Given any instance Z of priority multicommodity flow (Definition 4.1), let
7' denote the instance with all demands and capacities scaled down by the minimum
demand min; d;. It is clear that the sparsest priority-cut remains the same in both
Z and 7'; a similar observation is true for the maximum priority flow. Note that the
maximum demand in Z’ is D = max; d;/ min; d;. We can now apply Lemma 4.5 to Z’
to obtain an O(logk - log(kD) - loglog k) ratio between the priority cut and flow. So

we obtain the same ratio for instance Z also.]
4.3. Removing Dependence on Demand Values. We now show that the
dependence on the maximum demand can be eliminated in Theorem 4.8. The only

part in our analysis which has the dependence on D is in Claim 4.6, which reduces

2The actual volumes may be even smaller as the recursive call on Uy (similarly Us) has volume
H(j)[U1] where j < i is the maximum index with sj,t; € Uy.

This manuscript is for review purposes only.

616
617
618
619
620
621
622
623
624
625
626
627
628
629

655
656
657
658
659

660

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 19

priority sparsest cut to multicut. Our idea to eliminate the dependence on D is to
(i) break up the original instance into several sub-instances, such that the ratio of
max-to-min demand is polynomial in k& in each sub-instance, and (ii) combine the
flow solutions across all subinstances while incurring only an extra constant-factor in
congestion. This high-level approach is similar to that of Plotkin and Tardos [36]
for flow-cut gaps in the static setting where earlier bounds of O(logklog D) [31]
were improved to O(log® k). However, the specific flow combination used in [36]
is inapplicable in the priority setting. So we provide a different method below.

THEOREM 4.9. The worst-case ratio between sparsest priority-cut and mazimum
priority flow is O(logk - logn - loglog k), where n is the number of vertices.

Proof. By assigning edge capacities, we assume (without loss of generality) that
the number of edges in each graph G(i) is at most m = O(n?). Using LP extreme
point properties, it follows that any flow for any request ¢ € [k] can be decomposed
into at most m non-zero flow paths.

As a first step, we break up the demands into classes where

D ={iek]l : 2m)*" <d; < 2m)***V} vheZ.

Note that the ratio of maximum demand to minimum demand in each class is at
most m*. By Theorem 4.8, the flow-cut ratio for all requests within any class is
p = O(logk - logn - loglog k). Hence there is a priority multicommodity flow Fj,
routing all demands in each class h with congestion p.

It suffices to obtain a routing of all the demands with congestion O(p). We
combine flows in the following manner. We combine all the odd classes into one flow
of O(p) congestion, and all the even classes into another flow of O(p) congestion.
Putting the two together would imply the desired flow of O(p) congestion for all
classes.

To this end, we now show how to combine the flows of the odd classes into one
common flow (handling even classes is identical). Here, we use the fact that the
number of non-zero flow paths for each request in class Fy, is at most m. We simplify
each flow Fj, in the following manner: for each i € Dy, simply ignore all flow paths
carrying less than d;/(2m) flow. Note that after this, the total flow routed for each
demand 1 is still at least d;/2. Moreover, each edge carrying non-zero flow in Fj, in
fact carries a flow of at least (2m)*"/(2m). Now we observe that even if we simply
add all flows into a single flow, the overhead in congestion would be small. Formally,
consider any edge e and let h denote the largest class whose demands route flow
using e. Then, the total utilization of edge e by demands of all odd classes before
his LE" < k- mAh=1) < pth=3, (Note that as we are only combining odd classes,
all demands from previous classes are at most (2m)?(*=1).) On the other hand, the
utilization of e in just F is at least (2m)**~* > 1. L=". So we can combine all odd
classes with only a factor 4 increase in congestion.]

5. Online Algorithm. In this section we provide a randomized online algorithm
for EERP with competitive ratio O(log®*™* k-(log log k)>*), which proves Theorem 1.2.
For better clarity in presentation, we will first assume that k is known up front to
the algorithm, and in Section 5.2 we discharge this assumption to make the algorithm
truly online. Recall that we use A = O(log k) as in the offline algorithm; this value is
determined since we assume we know the value of k.

Similar to the offline algorithm, our overall online algorithm comprises two stages:
in the first “buying” stage, we decide which edges to power on (or buy) and incur the

This manuscript is for review purposes only.

661
662
663
664
665
666
667
668
669

670

685
686
687
688
689
690
691
692
693
694
695

20 ANTONIADIS ET AL.

static cost, in an online manner. Once this is done, the natural thing to do would be
to route all the requests using the edges bought, to minimize the dynamic power of
the routing. Note that the waterfilling algorithm is naturally suited for solving this
DynPM problem in an online manner. We perform the buying stage in steps 1 and 2
below, and the final routing in step 3 below.

Our algorithm separately runs two instances of the online waterfilling algorithm
(Theorem 2.1). The first one routes the hallucinated demands to determine the edges
to buy, and the second one actually routes all the original demands. The first instance
is called Zp4; and the second is called Z,.;. Initially, both are empty instances.

In response to request-pair (s;,t;) the algorithm takes the following steps:

1. Augmenting the Steiner backbone: We run an online algorithm for
Steiner forest to connect s; and t;, where the edges have costs {c. : e € E}.

2. Augmenting the Hallucination backbone: Request i € [k] “hallucinates”
a demand of ¢ - B; units, where B; ~ Binomial(d;, %) We feed the hallucinated
demand to the online waterfilling algorithm (Theorem 2.1) for instance Zj,4;, which
updates its routing H to add an unsplittable routing of ¢- B; units of flow between
s; and t;. Let Gy (i) 2 Gu(i — 1) denote the subgraph of all edges used in H.
3. Routing: Define graph Gp(i) := Gs(i) U G (i), and let P; denote the set
of all s;-t; paths in Gg(i). Now feed the actual demand (s;,¢;,d;) to the online
waterfilling algorithm (Theorem 2.1) for instance Z,. to find a path P, € P;.
Output P; as the routing of request i.

5.1. Analysis. The outline of the analysis closely mirrors that of Section 3, with
the main difference being that we use the bounds established in Section 4 on the flow-
cut gap of priority multicommodity flows instead of the classical flow-cut gaps we
used in Section 3. We now show that our online algorithm, which knows k upfront, is
0] (logo"*'3 k - (loglog k)o‘)—competitive for EERP. The high-level approach is the same
as for the offline problem.

Static power of Gg(k). To maintain an online Steiner forest, we use the O(log k)-
competitive algorithm from [12]. This allows us to bound the static power of edges
in Gg(k) by O(logk) - Opt.

Static power of G (k). We bound the static power for the hallucination backbone
by its dynamic power (as each hallucinated demand is at least ¢), which in turn can
be bounded by O(log® k) - Opt, using an argument analogous to that of Lemma 3.1.

Dynamic power. The analysis of the dynamic power of the algorithm’s routing
is significantly more involved than in the offline case. Again, using Theorem 2.1, it
suffices to prove the ezxistence of a routing of low dynamic power where each request
i is routed on a path from P;, which is the set of all s;-t; paths in the current graph
Gr(i). But how do we ensure that there exists a good (offline) routing with the
additional restriction on the edges allowed for each request? In the offline algorithm,
because the backbone graph was static, we could appeal to the classic multicommodity
flow-cut gap: this is no longer applicable in the online case. Indeed, this is the main
difference from the analysis of the offline algorithm, and we resort to the bounds we
established on the flow-cut gap of priority multicommodity flows in Theorem 4.9.

LEMMA 5.1. The expected static power of the backbone Gg(k) is O(A%) - Opt.

Proof. The proof is identical to Lemma 3.2 in the offline case, except that the
static power of Gg(k) is O(log k) - Opt due to the online Steiner forest algorithm. 0O

In order to show that the dynamic power of our routing is small, we need to show
that there is a low-congestion priority multicommodity flow on the backbone edges.

This manuscript is for review purposes only.

696
697
698
699
700

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 21

Formally, let {H.(i) : ¢ € E} denote the edge loads induced by the routing H after
arrival of request pair s;-t;. Then we define the following edge capacities:

e H.(i) if e € Gp(i)\ Gs(i)
{He(i)+)\q ifeeGg(i) A Vee E.

Note that only edges in Gr(i) = Gg(i) U Gg(i) have nonzero capacity. Also, note
that the values g.(¢) are monotonically non-decreasing over the value of i, since the
routing H is an online routing which doesn’t re-route any flows, and G is the output
of an online Steiner forest algorithm which only adds edges. Finally, similar to the
offline algorithm, we can bound @, (k) < 2% (Hc(k)* + A%0 - Leeg (k)), SO We have:

(5.1) Y cE[G(k)*] < 2% | D cB[He(k)*] + 00X Y ¢ | =0(*)-Opt,

ecE eceE e€Ggs(k)

where the last inequality uses (i) the static power of Gis(k) is 0 - 3 cq k) Ce <
O(log k) - Opt due to the online Steiner forest algorithm and (ii) the expected dynamic
power of H is Y . c.E[Hc(k)*] = O(A®) - Opt by Lemma 3.1.

Equipped with the above notations, we show that the prefix-sparsity of the graphs
Gr(l) C Gp(2) C --- C Gp(k) is large w.r.t the original demands, where an edge
e € Gp(i) has capacity ¢.(¢). This is analogous to Lemma 3.3 for the offline setting.

LEMMA 5.2. With probability at least 1 — O(1/k?*®), the prefiz sparsity of the
sequence of graphs Gp(i) (equipped with edge capacities {q.(1)}) is at least A/3.

Proof. Fix some 7. Since all pairs in [i] = {1,2,---i} have hallucinated indepen-
dently, we can apply Lemma 3.3 and conclude that the sparsity of G(4) is at least \/3
with requests [i]. The lemma then follows by a simple union bound over all ¢ € [k]. O

COROLLARY 5.3. With probability at least 1 — k=2%, there exists a fractional pri-
ority routing that respects capacities O(log? k - loglog k) x §.

Proof. We first argue that it suffices to exhibit a good priority multicommodity
flow in the following sequence of virtual graphs B(1) C B(2) C ... C B(k), with B(%)
defined on vertices V' with the following edges and capacities:

o Steiner edges: each edge e € Gg(i) has capacity g. = Ag in B(4).

e Hallucinated edges: for each j € [i] we add a direct edge (s;, ¢;) with capacity

(s, t;) = 4 By in B(i).

Note that each hallucinated edge (s;,t;) in B(i) corresponds to an actual s; — ¢t;
path carrying ¢ - B; flow in the actual hallucinated routing H (based on which we
assign the virtual capacities g, in the first place). Hence, if we find a low congestion
priority multicommodity flow in B, then it is easy to translate it into a low congestion
priority flow in G with virtual capacities .. Finally, we make another simplification
which again does not alter the flows: for any degree two Steiner vertex v in B(k)
where both its incident edges (u,v) and (v,w) are from the Steiner forest Gs(k),
short-cut these edges, i.e. remove (u,v) and (v, w), and add edge (u,w) with capacity
Aq. By repeatedly doing this, we will end up with a graph without such degree two
Steiner vertices, which will imply that the total number of edges in B(k) (and hence
in all its subgraphs) is at most O(k). Now we can utilize Theorem 4.9 to obtain
an O(log2 k - loglogk) flow-cut gap for such instances. Combining this fact with
Lemma 5.2 and Theorem 4.4 then completes the proof.]

This manuscript is for review purposes only.

i
©

ut

ot ot Ot
S TR R~

3

o

ol oot ot ot ot Ot

©

b B B B B T BN B B B B |

e}

22 ANTONIADIS ET AL.

LEMMA 5.4. The expected dynamic power of the online algorithm’s routing is

O(1) x (E[Static power of Gg| + p* quE[Zj‘j]) < O(A*T p™) . Opt,

€

where p = O(log® k - (loglog k)).

Proof. This proof is identical to Lemma 3.5 (for the offline problem), where we:
e use Corollary 5.3 to get the existence of a fractional routing respecting ca-
pacities p - ¢ (instead of Corollary 3.4),
e use Lemma 5.1 to bound the static power (instead of Lemma 3.2),
e use (5.1) to bound E[g2] (instead of (3.1)), and
e use the online guarantee from Theorem 2.1 for minimizing dynamic power.O

Combining Lemmas 5.1 and 5.4, we obtain:

THEOREM 5.5. There is an O(log>* ™ k- (loglog k)®)-competitive randomized on-

line algorithm for EERP when the number k of requests is known.

5.2. When Number of Requests is Unknown. Our algorithm extends easily
to the truly online setting when the final number k of request-pairs is not known
in advance. The only place where our online algorithm relies on knowledge of k
is in the hallucination step. Recall that each request 7 hallucinates a demand of
q - Binomial(d;, A\/q) units, where the parameter A = O(logk). Let A(i) = O(logi)
where the constant factor in the big-O is the same as for \. We now modify the
online algorithm as follows. When request-pair ¢ arrives, we hallucinate a demand of
g - Binomial(d;, A(¢)/q) units. Subsequently, upon the arrival of each request j > 1,
we ensure that request-pair ¢ has total hallucinated demand of g - Binomial(d;, A\(5)/q)
units. This can be done easily by re-sampling #’s hallucinated demand (with the
appropriate probability) after each request arrival j > i.

We will show that the competitive ratio of this algorithm is only an O((log log k)<)
factor more than that in Theorem 5.5. Recall (from Section 5.1) the definitions of
capacities ¢ and graphs Gr(1) C Gr(1) C --- Gr(k). We continue to have Lemma 5.1
and (5.1). However, the prefix sparsity condition (Lemma 5.2) is no longer true, as
our sampling probabilities are now smaller. We have the following (weaker) version
of Lemma 5.2 (the proof is identical).

LEMMA 5.6. For each i € [k]|, with probability at least 1 — O(1/i%®), the sparsity

of multigraph G(i) with demands {(s;,t;)};_, is at least Q(logi).

We first analyze the algorithm assuming the following.
(5.2) Assume that for each ¢ € [k], the sparsity of G(i) is at least logi.

Later we show how to handle the (low probability) case where (5.2) does not hold.
By (5.2), the prefix-sparsity of the sequence Gr(1) C Gp(2) C ---G(k) is Q(1).
Using this in Theorem 4.4 (instead of the logk prefix-sparsity from Lemma 5.2) we
immediately obtain that the sparsest priority-cut is ©(1/logk). We can actually
obtain a better bound by modifying the proof of Theorem 4.4, as shown below.

THEOREM 5.7. Consider a sequence of multigraphs G(1) C G(2) C --- G(k) with
requests {(s;,t;,d;) : i € [k]}. Assume that for each i € [k], the sparsity of multigraph
G (i) with requests indexed {1,2,---i} is at least logi. Then the sparsest priority cut

. 1
is <loglogk :

This manuscript is for review purposes only.

784

785
786
787

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 23

Proof. We only provide an outline as the proof is almost identical to that of
Theorem 4.4. The difference is in inequality (4.1) which now becomes:

14 1 4
STN(C) + o7 > Q.

h=1 h=2

(5.3) N(C)

IN

Recall that here C' is a connected component that forms at time j (i.e. when request
j arrives) due to the merging of components {Cj,}5_, in graph H(j —1). Also Cy
is the component in {Cj,}§_, with the maximum number of terminals. This change
in the recurrence for N(-) affects the total contribution of each edge e = (u,v) € @
in the expansion of ZD:Comp(H(,?)) N(D). Recall that whe.never. e contributes to this
sum, the number of terminals in the component containing either w or v doubles.
Consider the total contribution of e due to components containing u (the case of v is
identical). Let 2 < Ty < T, < --- < Tz < 2k denote the number of terminals in u’s
component whenever e contributes due to u. Recall that the number of terminals in
u’s component at least doubles each time, i.e. Tpy1 > 2Ty for all 1 < b < 5. Also,
note that if u’s component has T} terminals then the total number of terminals at
that time j, > Tp: so e’s contribution at this time is @ < 1L Therefore, ¢e’s

— logTy "
total contribution is at most:
B 1 B 1 B 1 B 1
< < [- <1 21 k
D i S 2iwh S i@ - Zb < log(2logh).
b=1 b=1 b=1 b=1
This completes the proof of Theorem 5.7.]

Exactly as in Corollary 5.3, we obtain:

COROLLARY 5.8. Assuming (5.2), there exists a fractional priority routing that
respects capacities O(log? k - loglog k) x §.

The proof is identical to Corollary 5.3, where we use Theorem 5.7 (instead of Theo-
rem 4.4) along with the flow-cut gap (Theorem 4.9).
We now bound the overall expected dynamic power.

LEMMA 5.9. The expected dynamic power of the online algorithm’s routing is

O(1) x (E[Static power of Gg] + p* ZcJE[@S‘]) < O(\H p) . Opt,

where p = O(log” k - (loglog k)?).
Proof. This proof is very similar to Lemmas 5.4 and 3.5. Let
I ={i€[k]: graph G(i) has sparsity at least logi}.

Then, if we restrict to the requests in I then (5.2) is satisfied. Now, exactly as in
Lemma 5.4 (using Corollary 5.8, Lemma 5.1, Inequality (5.1) and Theorem 2.1), the
expected dynamic power to route I is O(/\‘J”'1 p%) - Opt.

Now we bound the expected cost due to requests I = [k] \ I. We will bound the
optimal dynamic power of instance Z,.; restricted to I. To this end, consider the
feasible routing that sends d; units along the unique s; —t; path in G'g for each i € I.
The expected dynamic cost of this routing is at most:

(Z ce>-ZPr[i€I]'(iq)a<<Z)Zlm (ig)* <O(1 Zcev

e€Gg e€Gg ecGg

This manuscript is for review purposes only.

24 ANTONIADIS ET AL.

where the first inequality uses Lemma 5.6. So the expected optimal dynamic power of
Taet restricted to I is at most O(1) times the static power of Gg. Using Theorem 2.1,
the expected dynamic power of our online algorithm on I is also O(1) times the static
power of Gg.

Combining the costs due to requests in I and I, the lemma follows. 0

Using Lemmas 5.1 and 5.9, we obtain:

THEOREM 5.10. There is an O(log®* ™' k - (loglog k)?®)-competitive randomized
online algorithm for EERP.

6. Multicommodity Capacitated Network Design. In this section, we con-
sider the (uniform) capacitated multicommodity network design problem (CapND) as
studied by [3]. The CapND problem is also called the fized-charge network design
problem in the operations research literature. In uniform CapND, we are given an
undirected multigraph G = (V, E) with each edge e € E having a cost ¢, and capac-
ity ¢ > 0 (same across all edges). We are also given a collection of k request-pairs
{(si,t;) : @ € [k]} each with demand d; > 0. The goal is to choose a minimum cost
subgraph H C G such that H can support a concurrent multicommodity flow of the
request-pairs. Let m = |E| denote the number of edges in G. Unlike the earlier sec-
tions, the flow for each request does not have to be unsplittable. In the case that each
demand is at most ¢, we will in fact see that our algorithm guarantees an unsplittable
routing even if the optimum is splittable. We assume (without loss of generality) that
there is at most one request between each pair of vertices, so k < [V |2 < m2.

We only consider the online version of this problem where the requests arrive over
time, and one needs to buy edges in an online fashion so that the current set of edges
can support the desired multicommodity flow. We will prove Theorem 1.3, i.e. an
(O(logm), O(log® m)) bicriteria competitive ratio. An («, 3) bicriteria performance
guarantee means that the solution has (i) cost at most « times the optimum (with
edge capacities ¢) and (ii) the total flow on each chosen edge is at most - ¢. For the
(simpler) offline version, we can obtain a slightly better (O(logm), O(log m)) bicriteria
approximation algorithm as described in the conference version of this paper [5]: we
do not discuss this result here.

At a high level, our algorithm is similar to those in Sections 3 and 5. The difference
is that we now try to minimize congestion (which corresponds to the maximum load
on edges) rather than the energy cost (which corresponds to the sum of « powers of
these loads). We first consider (in Section 6.1) the special case when each demand is
at least the capacity q. We then reduce the general case to this special case using the
hallucination idea (in Section 6.2).

6.1. Online CapND For Demands At Least g. As a first step, note that if
each demand is at least ¢, then we can ensure that each demand d; is an integer
multiple of ¢ by considering demand [%] - ¢ instead: this only loses a constant factor
in the congestion bound. Further, each request (s;,%;,d;) can be split into [%] many
requests of demand ¢ each with the same terminals s; and ¢;. Hence, for the remainder
of the subsection, we assume that all demands are actually equal to ¢, the common
edge capacity. Note that we may assume that the total demand Zle d; < mgq,
as otherwise the CapND instance must be infeasible (the total available capacity is
mq). This means that the number of demand-q requests after the above modification
is at most k 4+ m, which is polynomial. The requests (s;,t;) arrive online, and the
algorithm must irrevocably buy edges so that, at any point, the subgraph bought by
the algorithm can simultaneously support a (splittable) multi-commodity flow of ¢

This manuscript is for review purposes only.

836
837
838
839

840
841

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

863

864

865

866

867
868
869
870
871
872
873
874
875

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 25

demands for each request. We refer to this special case of CapND as CapNDg.

A closely related problem is min-cost circuit routing that was considered in [9].
Here, the routing for each request is unsplittable (rather than splittable) and the cost
of the solution is the sum of costs over all paths used in the routing.

THEOREM 6.1 ([9]). There is an (O(1),0(logC)) bicriteria competitive algo-
rithm for min-cost circuit routing, where C' =) . c is the total cost of edges.

We note that this result also holds when we compare to the splittable optimal solution
to min-cost circuit routing: the proof from [9] extends immediately by averaging over
all the flow paths in the splittable optimum. Moreover, for the CapNDg problem
(where all demands and capacities are q), the cost guarantees carry over directly from
the min-cost circuit routing problem: so we obtain an (O(1),O(log C)) bicriteria
competitive algorithm for CapNDg. We will refer to this algorithm as Acnp.

We can obtain an improved (O(1),O(logm)) bicriteria guarantee for CapND,
using a standard guess-and-double approach. At any point let B denote an upper
bound on the optimal cost (initially this equals the minimum edge cost). Then, we
simply ignore edges of cost more than B, and update the cost of any edge e with
cost ¢, < B/m to be equal to é = B/m. Note that for the modified instance, all
edge costs ¢ vary between B/m and B: so we may assume (by scaling) that the
maximum edge cost is m, which implies that C < m2. We then pass the modified
instance to algorithm Acyp and return its output. We double the guess B whenever
algorithm Acnp “fails”, i.e. either its cost exceeds O(1) - B or the congestion exceeds
O(logm). Whenever B is doubled, we run the algorithm from Theorem 6.1 on the
entire input sequence again (this time with the new value of B). Note that this is still
a valid online algorithm for CapND, as we do not need to commit to routing paths in
an online fashion. Clearly, the total cost incurred is O(1) times the optimal cost of
CapND,. By considering only the edges bought in the last run of the algorithm from
Theorem 6.1, it is clear that there exists a routing for all requests with congestion
O(logm). So we obtain:

LEMMA 6.2. There is an an (O(1),O0(logm)) bicriteria competitive algorithm for
uniform capacitated network design when all demands are at least q.

We will refer to this algorithm as Acnp.

6.2. Online CapND. We now consider the general demands setting. As a first
step, we split the instance into two sub-instances, one which handles all requests
(84, ti,d;) such that d; > ¢, and the other which handles the requests (s;, t;,d;) such
that d; < g. If we separately solve each of the sub-instances and combine them, the
total cost and congestion would just add up. So this splitting only incurs a factor 2
overhead. We can solve the first sub-instance (demands at least ¢) using algorithm
Acnp. For the remainder of this section, we assume that all demands are at most
q. We handle this case by using our hallucination idea to randomly scale up some
demands to integer multiples of ¢, after which we can use algorithm Acnp.

This manuscript is for review purposes only.

876

877
878
879

880
881
882

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

905
906

26 ANTONIADIS ET AL.

Online CapND Algorithm when all demands at most q.

1. Constructing the Steiner backbone Gg(i). Solve the online Steiner
forest instance on graph G = (V, E) with pairs {(s;,%;)}*_; using the O(logk)-
competitive online algorithm from [12]. Let Gg(i) 2 Gg(i—1) denote the resulting
solution, maintained incrementally.

2. Constructing the Hallucination backbone Gy (i). Request i € [k] “hal-
lucinates” a demand of ¢ - B; units, where B; ~ Binomial(d;, %) and A\ = O(log k).
Let G denote the network obtained from G by replacing each edge e € E by
p = O(logm) many parallel “copies”, each of cost c. and capacity q. Feed the

hallucinated demand in network G to the online algorithm Acnp, which maintains
subgraph G (i) incrementally. Let Gy (i) denote the subgraph of G that contains

an edge e € E if and only if Gy (i) contains any copy of e.
3. Output. Return Gg(i) UGg(i) as the final solution.

6.3. Analysis. The analysis proceeds along the same lines as in Section 3. We
prove the following lemmas, the combination of which will prove Theorem 1.3.

LEMMA 6.3. The cost of the Steiner forest Gg is at most O(logk) - Opt.

Proof. Since the optimal solution supports a multicommodity flow between all
the request pairs, it contains a Steiner forest connecting each s; and ¢;. The lemma
now follows as we use an O(log k)-competitive algorithm for Steiner forest [12]. O

LEMMA 6.4. With high probability, graph Gg (k) has cost O(logm)Opt and can
route all the hallucinated demands with edge congestion O(log® m).

Proof. The proof is similar to that of Lemma 3.1, except that we now need to
bound the maximum load on any edge as opposed to the total a!” power of the
loads. Consider the optimal CapND solution along with a splittable routing &; for
each request ¢; note that the total load on any edge in this solution is at most ¢q. Let
O denote the following random routing: for each request i, sample B; many s; — t;
paths from S; and send demand of g along each of these paths. We will show that O
corresponds to a solution to the hallucinated CapND instance with cost at most Opt
and congestion at most p = O(logm).

Since we only use edges of the optimal CapND solution, the cost of edges used
by O is at most Opt. Moreover, the load on any edge (under the routing O) is the
sum of independent Bernoulli random variables (scaled by ¢) with mean at most
Ag = O(logm) - g. So a straightforward application of Chernoff bounds implies that
the maximum load on any edge is at most O(logm)-¢ with high probability. Consider
now the following solution to the hallucinated CapND instance on network G. For all
e € E, if O sends 0 - ¢ flow through e then the solution contains 6 copies of edge e.
Therefore, the optimal value of the hallucinated CapND instance is at most p - Opt.

Lemma 6.2 now implies that algorithm Acnp obtains (with high probability)
a solution to the hallucinated instance (in G) with cost O(p) - Opt and congestion
O(logm). This translates to a solution in the original network G with cost O(logm) -
Opt and congestion O(plogm) = O(log® m). 0

LEMMA 6.5. With high probability, graph Gs(k) U Gg (k) can support routing all
demands with congestion O(log® m).

Proof. Much like the proof of Lemma 3.3, we consider a virtual graph 5 on vertices
V' with the following edges and capacities:
e Steiner edges: each edge e € Gg(k) has capacity g. = Aq.

This manuscript is for review purposes only.

910
911
912
913
914
915
916
917
918

919
920
921
922

923
924
925
926
927
928

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 27

e Hallucinated edges: for each i € [k] edge (s;,t;) has capacity equal to its
hallucinated demand, i.e., g, +,) = ¢ Bi.

Using an argument identical to that of Lemma 3.3, we can show that the sparsity of B
with respect to the original demands is at least A = Q(log k) with high probability. In
this event, by using the flow-cut gap for multicommodity flows [34], we can conclude
that the graph B can support a multicommodity flow on the original demands. Finally,
since the hallucinated demands can be routed on Gz with congestion O(log? m) (with
high probability), the edges in Grp = Gg UGy can support a multicommodity flow of
all requests with congestion O(log2 m).]

Now, Lemmas 6.4 and 6.3 bound the cost of the solution, and Lemma 6.5 estab-
lishes the congestion bounds. In particular, it follows that with probability 1 — k=3,
the final solution Gg(k) U G (k) has cost O(logm) - Opt and congestion O(log® m).
This completes the proof of Theorem 1.3.

7. Conclusion. In this paper, we considered the energy-efficient routing prob-
lem with costs on edges. We obtained an O(log™ k)-ratio approximation algorithm
and an O(log®* ™! k)-ratio online algorithm, where o > 1 is the dynamic-power ex-
ponent. While a poly-logarithmic approximation ratio is necessary, an interesting
open question is to obtain an approximation ratio of the form g(«) - log k, where the
poly-logarithmic factor is not exponential in .

REFERENCES

[1] Vision and roadmap: Routing telecom and data centers toward efficient energy
use, May 2009, http://wwwl.eere.energy.gov/manufacturing/datacenters/pdfs/vision_and_
roadmap.pdf. Proceedings of Vision and Roadmap Workshop on Routing Telecom and Data
Centers Toward Efficient Energy Use.

[2] A. AgrawAaL, P. N. KLEIN, AND R. Ravl, When trees collide: An approzimation algorithm for
the generalized steiner problem on networks, SIAM J. Comput., 24 (1995), pp. 440-456.

[3] M. ANDREWS, S. ANTONAKOPOULOS, AND L. ZHANG, Minimum-cost network design with
(dis)economies of scale, STAM J. Comput., 45 (2016), pp. 49-66.

[4] M. ANDREWS, A. FERNANDEZ, L. ZHANG, AND W. ZHAO, Routing for energy minimization in
the speed scaling model, in INFOCOM, 2010, pp. 2435-2443.

[5] A. ANTONIADIS, S. IM, R. KRISHNASWAMY, B. MOSELEY, V. NAGARAJAN, K. PRUHS, AND
C. STEIN, Hallucination helps: Energy efficient virtual circuit routing, in Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, 2014, pp. 1141-1153.

[6] J. ASPNES, Y. AZAR, A. FIAT, S. PLOTKIN, AND O. WAARTS, On-line routing of virtual circuits
with applications to load balancing and machine scheduling, Journal of the ACM, 44 (1997),
pp. 486-504.

[7] Y. AuMANN AND Y. RABANI, An o(log k) approxzimate min-cut maz-flow theorem and approz-
imation algorithm, STAM J. Comput., 27 (1998), pp. 291-301.
[8] B. AWERBUCH AND Y. AZAR, Buy-at-bulk network design, in FOCS, 1997.
[9] B. AWERBUCH, Y. AZAR, AND A. FIAT, Packet routing via min-cost circuit routing, in ISTCS,
1996.
[10] B. AWERBUCH, Y. AzAR, E. F. GROVE, M.-Y. Kao, P. KRISHNAN, AND J. S. VITTER, Load
balancing in the lp norm, in FOCS, 1995, pp. 383-391.
[11] N. BANsAL, A. GUPTA, R. KRISHNASWAMY, V. NAGARAJAN, K. PRUHS, AND C. STEIN, Multicast

routing for energy minimization using speed scaling, in MedAlg, 2012, pp. 37-51.

[12] P. BERMAN AND C. COULSTON, On-line algorithms for steiner tree problems (extended abstract),
in STOC, 1997, pp. 344-353.

[13] D. BROOKS, P. BOsE, S. SCHUSTER, H. M. JACOBSON, P. KuDvA, A. BUYUKTOSUNOGLU, J.-D.
WELLMAN, V. V. ZvyuBAN, M. GuprTA, AND P. W. COOK, Power-aware microarchitec-
ture: Design and modeling challenges for next-generation microprocessors, IEEE Micro,
20 (2000), pp. 26-44.

[14] D. CHAKRABARTY, C. CHEKURI, S. KHANNA, AND N. KORULA, Approzimability of capacitated
network design, in IPCO, 2011, pp. 78-91.

This manuscript is for review purposes only.

http://www1.eere.energy.gov/manufacturing/datacenters/pdfs/vision_and_roadmap.pdf
http://www1.eere.energy.gov/manufacturing/datacenters/pdfs/vision_and_roadmap.pdf
http://www1.eere.energy.gov/manufacturing/datacenters/pdfs/vision_and_roadmap.pdf

28 ANTONIADIS ET AL.

964 [15] D. CHAKRABARTY, A. ENE, R. KRISHNASWAMY, AND D. PANIGRAHI, Online buy-at-bulk network

965 design, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, (2015),
966 pp. 545-562.

967 [16] D. CHAKRABARTY, E. GRANT, AND J. KONEMANN, On column-restricted and priority covering
968 integer programs, in Integer Programming and Combinatorial Optimization (IPCO), 2010,
969 pp. 355-368.

970 [17] D. CHAKRABARTY, R. KRISHNASWAMY, S. L1, AND S. NARAYANAN, Capacitated network design
971 on undirected graphs, in APPROX, 2013.

972 [18] M. CHARIKAR, J. NAOR, AND B. SCHIEBER, Resource optimization in gos multicast routing of
973 real-time multimedia, IEEE/ACM Transactions on Networking, 12 (2004), pp. 340-348.
974 [19] C. CHEKURI, M. T. HAJIAGHAYI, G. KORTSARZ, AND M. R. SALAVATIPOUR, Approzimation algo-
975 rithms for nonuniform buy-at-bulk network design, SIAM J. Comput., 39 (2010), pp. 1772—
976 1798.

977 [20] C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD, Multicommodity flow, well-linked terminals,
978 and routing problems, in STOC, 2005, pp. 183-192.

979 [21] G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER, Divide-and-conquer approzimation algorithms
980 via spreading metrics, J. ACM, 47 (2000), pp. 585-616.

981 [22] N. GARG, V. V. VAZIRANI, AND M. YANNAKAKIS, Approzimate maz-flow min-(multi)cut theo-
982 rems and their applications, SIAM J. Comput., 25 (1996), pp. 235-251.

983 [23] M. X. GOEMANS AND D. P. WILLIAMSON, A general approzimation technique for constrained
984 forest problems, SIAM J. Comput., 24 (1995), pp. 296-317.

985 [24] A. GupTA, R. KRISHNASWAMY, AND K. PrRUHS, Online primal-dual for non-linear optimization
986 with applications to speed scaling, CoRR, abs/1109.5931 (2011).

987 [25] A. GupTA, A. KuMAR, M. PAL, AND T. ROUGHGARDEN, Approzimation via cost sharing:
988 Simpler and better approzimation algorithms for network design, J. ACM, 54 (2007), p. 11.
989 [26] M. HAJIAGHAYI, R. KHANDEKAR, G. KORTSARZ, AND Z. NuToVv, Capacitated network design
990 problems: hardness, approrimation algorithms, and connections to group steiner tree, in
991 Manuscript, 2013.

992 [27] M. IMASE AND B. M. WAXMAN, Dynamic Steiner tree problem, SIAM J. Discrete Math., 4
993 (1991), pp. 369-384.

994 [28] W. B. JOHNSON, G. SCHECHTMAN, AND J. ZINN, Best constants in moment inequalities for
995 linear combinations of independent and exchangeable random wvariables, Ann. Probab.,
996 (1985), pp. 234-253.

997 [29] D. R. KARGER, Random sampling in cut, flow, and network design problems, Mathematics of
998 Operations Research, 24 (1999), pp. 383-413.

999 [30] R. KHANDEKAR, S. RAa0o, AND U. V. VAZIRANI, Graph partitioning using single commodity
1000 flows, J. ACM, 56 (2009).

1001 [31] P. N. KLEIN, S. RAO, A. AGRAWAL, AND R. RAVI, An approzimate maz-flow min-cut relation
1002 for unidirected multicommodity flow, with applications, Combinatorica, 15 (1995), pp. 187—
10(202.

3
4 [32] J. F. KuroseE AND K. W. Ross, Computer Networking: A Top-Down Approach, Addison-
5 Wesley Publishing Company, USA, 2009.

1006 [33] F. T. LEIGHTON AND S. RAO, Multicommodity maz-flow min-cut theorems and their use in
1007 designing approzimation algorithms, J. ACM, 46 (1999), pp. 787-832.

1008 [34] N. LiNIAL, E. LONDON, AND Y. RABINOVICH, The geometry of graphs and some of its algorith-
1009 mic applications, Combinatorica, 15 (1995), pp. 215-245.

1010 [35] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithms, Cambridge University Press, 1995.

1011 [36] S. A. PLOTKIN AND E. TARDOS, Improved bounds on the maz-flow min-cut ratio for multicom-
1012 modity flows, Combinatorica, 15 (1995), pp. 425-434.

1013 [37] S. RAO AND S. ZHOU, Edge disjoint paths in moderately connected graphs, STAM J. Comput.,
1014 39 (2010), pp. 1856-1887.

1015 [38] H. P. ROSENTHAL, On the subspaces of LP (p > 2) spanned by sequences of independent random
1016 variables, Israel J. Math., 8 (1970), pp. 273-303.

1017 [39] F. S. SALMAN, J. CHERIYAN, R. RAVI, AND S. SUBRAMANIAN, Approzimating the single-sink
1018 link-installation problem in network design, SIAM Journal on Optimization, 11 (2001),
1019 pp. 595-610.

1020 [40] P. D. SEYMOUR, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281-288.
1021 [41] A. WIERMAN, L. L. H. ANDREW, AND A. TANG, Power-aware speed scaling in processor sharing
1022 systems, in INFOCOM, 2009, pp. 2007-2015.

1023 Appendix A. Waterfilling Algorithm Analysis.

1024 Proof of Theorem 2.1. Our proof is essentially a direct adaptation of Theorem 4.2

This manuscript is for review purposes only.

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

1041

1043

1044
1045
1046
1047

1048

ENERGY EFFICIENT VIRTUAL CIRCUIT ROUTING 29

in [10] for the online load balancing problem, to the online routing setting. For better
clarity in proof (and to closely mirror the proof of Theorem 4.2 [10]), we assume, for
the remainder of the proof, that all the scaling-factors ¢, of edges is 1. This is without
loss of generality as we can assume each edge e with scaling factor c. is sub-divided
into ¢, edges with unit scaling factor.

For the #*" request, let P/* denote the path that the waterfilling algorithm chooses
to route the demand, and let P denote the flow path of the optimal solution. Sim-
ilarly, let £.(i) denote the load of edge e after routing the i*" request, and let £*(4)
denote the load on edge e by using the optimal routing for the first i requests. Fi-
nally, let the overall instance have k requests which arrive online, so the final load on
any edge e is £.(k) using the algorithm’s routing, and is £%(k) by using the optimal
routing.

We use the following potential function ®(i) = > _/¢.(i)® which tracks the total
dynamic power after routing the first i requests. Now, by the greedy nature of our
routing, note that

i+ 1) = (1) < > (Leli) + di)* = Le(i)™

ec P’
<D (k) + di)™ — Le(R)
eEPi*
<di-o Y (Ce(k) +di)* !
ecPy

a—1
-1
< a-d; (Cge(k)al + <di <a1 + 1))) , for any ¢ > 1.
nc
ec P}

Above, the first inequality follows from the greedy choice of our routing; the second
and third inequalities use the convexity of the dynamic power function (recall a > 1);
and the fourth is from Lemma 4.1 of [10]. We can choose ¢ > 1 to optimize our final
competitive ratio. Now, summing over all ¢, we get

a—1
(k) <a-c- Y L(k)(k)*" +a (O‘ln_cl + 1) o> a

e e i:e€hP}

Next, we note that Y > .. cp- dff <> (L5 (k))* since a > 1and £5(k) =3 ;. .cp- di

by definition of ¢%(k). So by using this, and the fact that ®(k) = >, lc(k)®, we get

STl(k)* <a-e Y C(k)(k) T +a (O‘lncl + 1> i > (@ k)™

€

We can now use Holder’s inequality to get

1

Stk <ae. (Zw:(k»a)a (Z&w) a5 e) Swwr

e e

Now, as in the proof of Theorem 4.2 in [10], if 2% = (3, le(k)*)/(D_.(£5(k))®), then

e

e a—1 a—1 ot
" <a-c-x +a|—+1
Inc

This manuscript is for review purposes only.

1056
1057
1058

1060
1061

1062
1063

1064
1065
1066

1067
1068
1069
1070
1071

30 ANTONIADIS ET AL.

It is now easy to see that we can bound x by ©(a®) by choosing ¢ to be a large enough
constant. For example, with ¢ = e (base of natural logarithm), * < eaz®™! + o,
ile. x — Ig—: < ea, which implies = < 2eaq. O

Appendix B. Probabilistic Inequalities.
THEOREM B.1 ([35]). Let X1,Xs,...,Xn be N independent random variables

such that Pr(X; =0 =1—p; and Pr[X; =1 =p;. LetY = Zfil X and p =EY.
Then for any § > 0, it follows that

Pr|Y < (1-0)u < exp(—us?/2).

THEOREM B.2 ([38, 28]). Let X1, Xs,...,Xn be independent non-negative ran-
dom variables. Let o > 1 and K, = ©(«a/log). Then it is the case that

1/a 1/«
(E[(Z XZ-)O‘}> < K, max (Z]E[Xi], (Z]E[Xf])) .

CoROLLARY B.3 ([11]). Letp >0, and let X1, Xa,..., X, be independent ran-
dom wvariables, each taking value D with probability min{1,p}. Then E[(>_, X;)*] <
(Ka)® - (pN D™ + (pND)®*), where K, = O(a/log).

Proof. For the case when p > 1, X; = D with probability 1, and hence we can
conclude that E[(}", X;)*] = (ND)®. For the case when p € [0,1], E[X;] = pD, and
E[X?] = pD®. From this we can conclude that the upper bound in Theorem B.2 is

K, max(pND, (pN)*/*D). Taking o' powers and replacing the max by a sum, we
get E[(32; Xi)?] < (Ko D)*((pN)* + pN).

This manuscript is for review purposes only.

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Offline Algorithm for EERP
	Analysis

	Priority Multicommodity Flows and Priority Cuts
	Relationship between Prefix and Priority Sparsity
	Priority Multicommodity Flows and Priority Sparsity
	Removing Dependence on Demand Values

	Online Algorithm
	Analysis
	When Number of Requests is Unknown

	Multicommodity Capacitated Network Design
	Online CapND For Demands At Least q
	Online CapND
	Analysis

	Conclusion
	References
	Appendix A. Waterfilling Algorithm Analysis
	Appendix B. Probabilistic Inequalities

